В выпуклом четырехугольнике ABCD AB=BC, AD=CD, ∠B=100° , ∠D=104°. Найдите угол A . Ответ дайте в градусах.
Проведем диагональ AC.
Рассмотрим треугольник ABC.
Так как AB=BC, значит треугольник ABC -
равнобедренный.
По
теореме о сумме углов треугольника:
180°=∠B+∠BAC+∠BCA.
180°=100°+∠BAC+∠BCA.
80°=∠BAC+∠BCA.
По
свойству равнобедренного треугольника, ∠BAC=∠BCA, тогда
∠BAC=∠BCA=80°/2=40°.
Треугольник ACD тоже
равнобедренный.
Аналогичными вычислениями получаем:
180°=104°+∠DAC+∠DCA.
∠DAC+∠DCA=76°/2=38°
∠A=∠BAC+∠CAD=40°+38°=78°
Ответ: 78
Поделитесь решением
Присоединяйтесь к нам...
Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника BKP к площади треугольника AMK.
Комментарии: