ABCDEFGHIJ – правильный десятиугольник. Найдите угол IBJ. Ответ дайте в градусах.
Вариант 1 (Предложил пользователь Светлана)
Вокруг любого
правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам десятиугольника образуют равные углы, так как разбивают десятиугольник на равные треугольники.
Такой угол (например ∠IOJ) равен 360°/10=36°
∠IOJ является
центральным, следовательно градусная мера дуги тоже равна 36°
∠IBJ тоже опирается на эту же дугу, но является
вписанным, следовательно:
∠IBJ=36°/2=18° (по
теореме о вписанном угле)
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 8, тангенс угла BAC равен 4/3. Найдите радиус вписанной окружности треугольника ABC.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.
Углы B и C треугольника ABC равны соответственно 66° и 84°.
Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 15.
Какой угол (в градусах) описывает часовая стрелка за 2 часа 2 минуты?
Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).
Комментарии: