Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол ABC. Ответ дайте в градусах.
AO=CO (т.к. это радиусы окружности)
AO=CO=AB=BC (по
определению ромба)
Проведем отрезок OB.
OB тоже радиус окружности, следовательно OB=AO=CO=AB=BC
Следовательно, треугольники ABO и BCO -
равносторонние, а все углы равностороннего треугольника равны 60° (по
свойству).
/ABC=/ABO+/CBO=60°+60°=120°
Ответ: /ABC=120°
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 30° и 45°. Найдите больший угол параллелограмма.
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.
Площадь прямоугольного треугольника равна 968√
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Комментарии: