ОГЭ, Математика. Геометрия: Задача №81744C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №81744C

Задача №345 из 1084
Условие задачи:

Основания трапеции равны 9 и 54, одна из боковых сторон равна 27, а косинус угла между ней и одним из оснований равен 65/9. Найдите площадь трапеции.

Решение задачи:

Площадь трапеции равна произведению полусуммы оснований на высоту. Основания нам известны, найдем высоту.
По определению cos(/CDE)=ED/CD
65/9=ED/27
ED=3*65
По теореме Пифагора:
CD2=ED2+EC2
272=(3*65)2+EC2
729=9*65+EC2
EC2=144
EC=12 - это и есть высота
Sтрапеции=EC*(BC+AD)/2
Sтрапеции=12*(9+54)/2
Sтрапеции=6*63=378
Ответ: Sтрапеции=378

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1F0615

Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 3,5 м над землёй, а нижний отстоит от ствола дерева на 1,2 м?



Задача №051A2A

В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.



Задача №96EB5A

Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.



Задача №82E915

Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.



Задача №165C12

В треугольнике ABC угол C равен 90°, sinA=8/9, AC=217. Найдите AB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика