ОГЭ, Математика. Геометрия: Задача №B51630 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №B51630

Задача №826 из 1087
Условие задачи:

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=17. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Решение задачи:

Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=7/17 (по первому свойству биссектрисы).
Получаем, что:
AD/CD=7/17
AD=CD*7/17
И...
CD/BD=7/17
17CD=7BD
BD=CD*17/7
BD=AD+AB=AD+17+7=AD+24
AD+24=CD*17/7
Подставляем значение AD, которое получили ранее AD=CD*7/17
CD*7/17+24=CD*17/7
24=CD*17/7-CD*7/17
Приводим к общему знаменателю:
24=(17*17*CD-7*7*CD)/(17*7)
24=(289CD-49CD)/119
24*119=289CD-49CD
24*119=240CD
CD=24*119/240=119/10=11,9
Ответ: CD=11,9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B44B61

В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах.



Задача №6E857B

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.



Задача №0DDD96

Площадь прямоугольного треугольника равна 8823. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №37F36A

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 14°?



Задача №A2BBBF

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика