Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

ОГЭ, 9-й класс.
Математика: Геометрия


Задача №837 из 844. Номер задачи на WWW.FIPI.RU - 764CF5


Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.

Решение задачи:

Вариант №1 (Предложил пользователь Елена)
Проведем отрезок MP, как показано на рисунке. BM - диаметр малой окружности (по условию задачи), следовательно треугольник BMP - прямоугольный с гипотенузой BM (по свойству описанной окружности).
К тому же, по условию задачи, точка Р - середина стороны BC, т.е. BM - серединный перпендикуляр к стороне BC.
Проведем серединный перпендикуляр к стороне AC, как показано на рисунке.
Центр описанной окружности совпадает с точкой пересечения серединных перпендикуляров треугольника, а в данном случае - это точка М, т.е. точка М и есть центр описанной окружности.
Так как получилось, что центр окружности лежит на стороне описываемого треугольника, то AM и MC - радиусы данной окружности и равны R=AC/2=4/2=2.
Ответ: 2


Вариант №2
Рассмотрим рисунок. Проведем отрезок MP, как показано на рисунке. BM - диаметр малой окружности (по условию задачи), следовательно треугольник BMP - прямоугольный с гипотенузой BM (по свойству описанной окружности).
Рассмотрим треугольники BMP и CPM:
MP - общая сторона
BP=PC (по условию задачи)
∠BPM=∠CPM, т.к. ∠BPM - прямой, а ∠CPM - ему смежный.
Следовательно треугольники BMP и CPM равны (по первому признаку). Отсюда следует, что BM=MC=MA.
Рассмотрим треугольник BMC. Т.к. MB=MC, то этот треугольник равнобедренный, следовательно ∠MCP=∠PBM (по свойству равнобедренных треугольников).
В треугольнике ABM аналогичная ситуация, ∠BAM=∠ABM. Т.е. получается, что ∠BAM+∠MCP=∠ABC. Из теоремы о сумме углов треугольника следует, 180°=∠BAM+∠MCP+∠ABC
180°=∠ABC+∠ABC
180°=2*∠ABC
90°=∠ABC
Из чего следует, что треугольник ABC - прямоугольный. По свойству описанной окружности следует, что точка М - центр окружности => R=AC/2=4/2=2.
Ответ: 2

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс.
Математика: Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/zadacha.php on line 562
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика