Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Анна
Учиться, учиться и еще раз учиться лучше, чем работать, работать и работать...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №750 из 880. Номер задачи на WWW.FIPI.RU - 0CDF34


Четырёхугольник ABCD со сторонами AB=19 и CD=28 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.

Решение задачи:

Вариант №1 (предложил пользователь Всеволод).
Проведем BE||AC
ABCE - трапеция по определению.
Так как эта трапеция вписана в окружность, то данная трапеция равнобедренная (по свойству описанной окружности).
Следовательно EC=AB=19.
∠AKB=∠KBE=60°, т.к. это накрест лежащие углы при параллельных прямых BE и AC.
BECD - четырехугольник, вписанный в окружность, следовательно:
∠ECD+∠KBE=180° (по свойству).
∠ECD=180°-∠KBE=180°-60°=120°
Применим теорему косинусов для треугольника CDE:
ED2=EC2+CD2-2*EC*CD*cos∠ECD
ED2=192+282-2*19*28*cos120°
ED2=361+784-2*19*28*(-1/2)
ED2=1145+532=1677
ED=1677
А теперь применим теорему синусов для треугольника CDE:
ED/sin∠ECD=2R
R=1677/(2*sin120°)=1677/(2*3/2)=1677/3=1677/3=559
Ответ: R=559


Вариант №2
Пусть R - радиус окружности.
Рассмотрим треугольник BCA.
Этот треугольник вписан в окружность, тогда по теореме синусов:
AB/sin(∠BCA)=2R
AB=2Rsin(∠BCA)
Рассмотрим треугольник BCD.
Этот треугольник тоже вписан в окружность, тогда по теореме синусов:
CD/sin(∠CBD)=2R
CD=2Rsin(∠CBD)
Рассмотрим треугольник BCK.
По теореме о сумме углов треугольника:
∠CBD+∠BCA+∠CKB=180°
∠AKB - является смежным по отношению к ∠CKB, следовательно ∠CKB=180°-∠AKB. Подставляем в уравнение выше:
∠CBD+∠BCA+(180°-∠AKB)=180°
∠CBD+∠BCA+(180°-60°)=180°
∠CBD+∠BCA=60°
Для простоты обозначим ∠BCA=а и ∠CBD=b, т.е. a+b=60°
a=60°-b
19=AB=2Rsin(a)
28=CD=2Rsin(60°-a)=2R(sin60°cos(a)-cos60°sin(a))=2R((3/2)*cos(a)-(1/2)*sin(a))=R(3cos(a)-sin(a)) (применена тригонометрическая формула)
Разделим второе уравнение на первое:
28/19=R(3cos(a)-sin(a))/(2Rsin(a))
28/19=(3cos(a)-sin(a))/(2sin(a))
28*2sin(a)=19*(3cos(a)-sin(a))
56sin(a)=193cos(a)-19sin(a)
75sin(a)=193cos(a)
Возведем правую и левую части в квадрат:
5625sin2(a)=361*3cos2(a)
1875sin2(a)=361(1-sin2(a)) (применена основная тригонометрическая формула)
1875sin2(a)=361-361sin2(a)
2236sin2(a)=361
sin2(a)=361/2236
sin(a)=361/2236
sin(a)=19/2236
19=2R*19/4*559)
1=2R/(2559)
R=559
Ответ: R=559

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 880)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика