Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Ирина
Профессор студентам на занятии по психологии говорит:
"А сейчас на практике мы рассмо...читать далее

ОГЭ, 9-й класс.
Математика: Геометрия


Задача №350 из 862. Номер задачи на WWW.FIPI.RU - A511BD


Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.

Решение задачи:

Рассмотрим треугольники ABC и KBM.
/B - общий.
/BAC=/BKM (т.к. это соответственные углы)
/BCA=/BMK (т.к. это тоже соответственные углы)
Следовательно, эти треугольники подобны по первому признаку подобия.
Тогда по определению подобных треугольников:
BA/BK=AC/KM
(BK+KA)/BK=AC/KM
1+KA/BK=AC/KM
1+7/3=AC/KM
10/3=AC/12
AC=10*12/3=10*4=40
Ответ: AC=40

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс.
Математика: Геометрия' (от 1 до 862)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика