Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

Задача №73 из 832. Номер задачи на WWW.FIPI.RU - 983824

Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности", это утверждение неверно,т.к. все зависит от расположения окружностей. Например, если центры окружностей совпадают, то окружности не пересекутся.
2) "Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны", это утверждение верно (по свойству углов)
3) "У равнобедренного треугольника есть центр симметрии", это утверждение неверно, т.к. у равнобедренного треугольника есть только осевая симметрия (ось совпадает с медианой опущенной к основанию).

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2016. Все права защищены. Яндекс.Метрика