Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Unknown
Если у вас есть знакомый иностранец, который хвалится тем, что прекрасно понимает русский ...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №586 из 863. Номер задачи на WWW.FIPI.RU - 552514


Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.

Решение задачи:

OC является радиусом окружности R, AO=AC-OC.
Проведем отрезок BO. BO - так же является радиусом окружности. AB - касательная к окружности, следовательно AB перпендикулярен BO (по свойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
(AC-OC)2=AB2+R2
(25-R)2=152+R2
625-50R+R2=225+R2
625-225=50R
400=50R
R=8
D=2R=2*8=16
Ответ: D=16

Поделитесь решением в соц. сетях.

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки

Подписывайтесь на наши группы в соц. сетях.

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 863)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика