Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Ирина
Профессор студентам на занятии по психологии говорит:
"А сейчас на практике мы рассмо...читать далее

ОГЭ, 9-й класс.
Математика: Геометрия


Задача №582 из 862. Номер задачи на WWW.FIPI.RU - 232A5F


Площадь равнобедренного треугольника равна 1963. Угол, лежащий напротив основания, равен 120°. Найдите длину боковой стороны.

Решение задачи:

Обозначим ключевые точки как показано на рисунке и проведем высоту BD.
Высота BD так же является и медианой, и биссектрисой (по третьему свойству равнобедренного треугольника).
Площадь треугольника ABC SABC=(1/2)AC*BD
Так как BD - медиана, то AC=2AD
Тогда:
SABC=(1/2)2AD*BD=AD*BD
Так как BD еще и биссектриса, то ∠ABD=∠ABC/2=60°
AD=AB*sin(∠ABD)=AB*sin60°
BD=AB*cos(∠ABD)=AB*cos60°
Тогда:
SABC=AB*sin60°*AB*cos60°=AB2(3/2)*(1/2)=AB23/4=1963
AB2/4=196
AB2=784
AB=28
Ответ: 28

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс.
Математика: Геометрия' (от 1 до 862)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика