Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

Задача №365 из 832. Номер задачи на WWW.FIPI.RU - 1B169F

В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.

Решение задачи:

Вариант №1
MN - средняя линия треугольника ABC, по теореме о средней линии NM=AB/2 => 2NM=AB.
Проведем высоту из вершины С.
SCNM=1/2*CE*NM=57 (по условию).
CE*NM=114
Рассмотрим треугольник ACD, NE||AD и идет из середины стороны AC, следовательно NE - средняя линия для треугольника ACD, значит CE=ED.
ABMN - трапеция (по определению), тогда
SABMN=(NM+AB)/2*ED. Подставляем ранее выявленные равенства, получаем:
SABMN=(NM+2NM)/2*CE=3NM/2*CE=1,5NM*CE=1,5*114=171
Ответ: SABMN=171


Вариант №2 (Прислал пользователь Артем)
MN - средняя линия треугольника ABC, по теореме о средней линии MN=AF=FB.
Проведем два отрезка от середины AB к точкам N и M, как показано на рисунке.
FN и FM - тоже являются средними линиями, следовательно:
FN=CM=BM и FM=AN=CN
Заметим, что треугольники ANF, CNM, MBF и NMF равны друг другу по третьему признаку равенства треугольников.
SABNM=SANF+SNMF+SMBF=SCNM+SCNM+SCNM=3*SCNM=3*57=171
SABNM=171

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2015-04-03 19:33:34) марина : Эта задача из второй части?
(2015-04-03 20:42:14) Администратор: Марина, точной информации у меня нет, но думаю, что из второй, хотя задача довольно легкая.
(2015-04-15 16:11:36) Артём: Из 1 части, обычно 12 задание. Кстати, четырёхугольник ABMN можно разбить на 3 равных треугольника (они будут равны треугольнику CNM). Таким образом 57+57+57=171.
(2015-05-11 16:54:23) Катерина: По моему мнению, возможно второе и более краткое решение. Треугольники CNM ACB подобны по двум углам. Коэффициент подобия равен двум, тк NM средняя линия и равна половине AB. Отношение площадей подобных треугольников равно квадрату коэффициенту подобия, то есть 4. Значит площадь ACB 4*57=228. Площади аддитивны, значит площадь ABMN= площадь ACB - площадь CNM= 228-57=171
(2015-05-11 18:15:48) Катерина: По моему мнению, возможно второе и более краткое решение. Треугольники CNM ACB подобны по двум углам. Коэффициент подобия равен двум, тк NM средняя линия и равна половине AB. Отношение площадей подобных треугольников равно квадрату коэффициенту подобия, то есть 4. Значит площадь ACB 4*57=228. Площади аддитивны, значит площадь ABMN= площадь ACB - площадь CNM= 228-57=171
(2015-05-26 16:56:28) Денис: Поддержу артема! в АNMB есть 3 одинкаковых треугольника которые равны СNM! просто симметрично относительно NM отложите CNM!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2016. Все права защищены. Яндекс.Метрика