Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

Задача №448 из 832. Номер задачи на WWW.FIPI.RU - 0D90BE

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.

Решение задачи:

Пусть:
∠KMP=38°
∠MKP=78°
∠KPM=64°
Рассмотрим треугольник AMK.
AM=AK (по второму свойству касательной)
Следовательно треугольник AMK - равнобедренный, тогда, по свойству равнобедренного треугольника:
∠AMK=∠AKM
Заметим, что оба этих угла охватывают дугу MK, и следовательно равны половине ее градусной меры (по свойству углов на окружности).
∠MPK является вписанным в окружность углом и опирается на эту же дугу, следовательно и он равен половине градусной меры этой дуги.
Получается, что:
∠AMK=∠AKM=∠MPK=64°
Применив теорему о сумме углов треугольника:
180°=∠AMK+∠AKM+∠MAK
180°=64°+64°+∠MAK
∠MAK=52°
Аналогично, для двух других треугольников получим:
∠BKP=∠BPK=∠PMK=38°
∠KBP=180°-38°-38°=104°
И...
∠CPM=∠CMP=∠MKP=78°
∠PCM=180°-78°-78°=24°
Ответ: 52°, 104° и 24°

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2015-05-20 00:39:11) Киса: А почему у вас ∠BKP=∠BPK=∠PMK=38° вить вы писали, что ∠KMP=38°?
(2015-05-20 08:06:59) Администратор: Киса, угол можно обозначать по разному, поэтому ∠PMK и ∠KMP - это одно и тоже.
(2015-05-26 20:54:35) : Благодарю!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2016. Все права защищены. Яндекс.Метрика