Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Unknown
Если у вас есть знакомый иностранец, который хвалится тем, что прекрасно понимает русский ...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №443 из 863. Номер задачи на WWW.FIPI.RU - 09C83B


Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.

Решение задачи:

Обозначим точки пересечения биссектрис со сторонами как показано на рисунке.
∠FAK=∠BEK (т.к. это накрест-лежащие углы).
Получается, что ∠BAK=∠BEK, следовательно треугольник ABE - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BE.
Треугольники ABK и EBK равны по первому признаку равенства треугольников.
Следовательно и высоты у этих треугольников тоже равны.
Аналогично, равны и треугольники ABK и AFK.
Получается, что высота параллелограмма равна 2h.
Площадь параллелограмма равна SABCD=2h*BC=2*1*2=4
Ответ: SABCD=4

Поделитесь решением в соц. сетях.

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2017-02-20 15:48:02) Артем: Зачем вы ещё на 1 домножали? По формуле надо h*на основание.
(2017-02-20 15:53:39) Артем: Почему 2h, а не 3? Там же у трёх треугольнов высоты.
(2017-02-20 20:19:01) Администратор: Артем, площадь параллелограмма равна произведению высоты параллелограмма и стороны параллелограмма. В этой задаче высота параллелограмма получилась равна двум высотам треугольников (начерчены синим цветом), поэтому S=2h*BC (h=1, BC=2) => S=2*1*2=4

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки

Подписывайтесь на наши группы в соц. сетях.

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 863)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика