Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Ирина
Профессор студентам на занятии по психологии говорит:
"А сейчас на практике мы рассмо...читать далее

ОГЭ, 9-й класс.
Математика: Геометрия


Задача №420 из 862. Номер задачи на WWW.FIPI.RU - 04C840


Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.

Решение задачи:

Пусть AD - биссектриса, описанная в условии.
BC - сторона, равная 48.
Рассмотрим треугольник ADC.
Для этого треугольника CO - биссектриса,
По свойству биссектрисы:
AO/OD=AC/CD=7/6
6*AC=7*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO - биссектриса,
По свойству биссектрисы:
AO/OD=AB/BD=7/6
6*AB=7*BD
Складываем полученные равенства:
6*AC+6*AB=7*CD+7*BD
6(AC+AB)=7(CD+BD), CD+BD=BC=48
6(AC+AB)=7*48
AC+AB=56
PABC=AC+AB+BC=56+48=104
Ответ: PABC=104

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2014-05-29 16:00:51) Алла: Каждая биссектриса треугольника делится в точке пересечение с биссектрисами в отношений суммы прилежащих сторон к противолежащей,считая от вершины. Тоесть по условию СО/OD=7/6=(AB+AC)/BC .Подставляя все значения будет 7/6=(AB+AC)/48. AB+AC=56,P ABC= AB+AC+BC=56+48=104.Мне кажется это решение будет короче и легче)
(2014-05-29 16:49:51) Администратор: Алла, так в сущности задача так и решена, просто решение расписано для понимания.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс.
Математика: Геометрия' (от 1 до 862)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика