Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: Анна
Учиться, учиться и еще раз учиться лучше, чем работать, работать и работать...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №412 из 883. Номер задачи на WWW.FIPI.RU - 00CECE


Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.

Решение задачи:

Рассмотрим треугольник AKD.
AK=AD (по условию задачи), следовательно данный треугольник равнобедренный.
По свойству равнобедренного треугольника ∠ADK=∠AKD
∠AKD=∠KDC (т.к. это накрест-лежащие углы).
Получается, что ∠ADK=∠AKD=∠KDC.
Следовательно DK - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2014-05-26 18:30:51) Елена: почему ∠ADK=∠KDC.
(2014-05-26 22:01:15) Администратор: Елена, потому, что ∠ADK=∠AKD, а ∠AKD=∠KDC.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 883)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика