Новость

2015-03-01
Как показала практика, наш сайт не всегда эффективно используются.
Пользователи не мо...читать далее

Юмор

Автор: неизвестен
Сержант выстроил свое отделение, и говорит:
- У меня две новости - мы бежим марш-брос...читать далее

Задача №416 из 832. Номер задачи на WWW.FIPI.RU - 0000C2

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 146°. Найдите угол C . Ответ дайте в градусах.

Решение задачи:

∠CBA - является смежным внешнему углу, следовательно, 180°=∠CBA+146°
∠CBA=180°-146°=34°
Так как AC=BC, то треугольник ABC - равнобедренный.
Значит ∠CBA=∠CAB=34° (по свойству равнобедренного треугольника)
По теореме о сумме углов треугольника:
180°=∠CBA+∠CAB+∠C
180°=34°+34°+∠C
∠C=180°-34°-34°
∠C=112°
Ответ: 112

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Обратите внимание!!!

Вы можете посмотреть эту и другие задачи в более удобном интерфейсе, в котором выделено поле для дополнительных материалов, использованных для решения. Организован удобный поиск и переход между задачами. Запомните номер этой задачи и введите его в левом меню интерфейса.


Комментарии:


(2015-04-15 07:20:31) арина: как же хорошо что появился этот сайт
(2015-05-11 18:19:32) дима: как получается 112
(2015-05-11 20:33:08) Администратор: Дима, я добавил строку в решение, чтобы стало понятней, но вообще-то в 9-ом классе такие уравнения надо уже уметь решать...

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Наш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2016. Все права защищены. Яндекс.Метрика