Задача №654 из 832. Номер задачи на WWW.FIPI.RU - B34077

Касательные в точках A и B к окружности с центром O пересекаются под углом 28°. Найдите угол ABO. Ответ дайте в градусах.


Решение задачи:

Проведем отрезок CO.
Рассмотрим треугольник ACO.
∠ACO=∠ACB/2=28°/2=14° (по второму свойству касательной).
∠CAO=90° (по первому свойству касательной)
По теореме о сумме углов треугольника:
180°=∠AOC+∠ACO+∠CAO
180°=∠AOC+14°+90°
∠AOC=76°
Рассмотрим треугольники ACO и BCO.
OC - общая сторона
AC=BC (по второму свойству касательной)
OA=OB (т.к. это радиусы)
Следовательно, по третьему признаку, данные треугольники равны.
Тогда и ∠AOC=∠BOC=76°
Рассмотрим треугольник AOB.
OA=OB (т.к. это радиусы)
Следовательно, треугольник AOB - равнобедренный.
Тогда ∠BAO=∠ABO (по свойству равнобедренного треугольника).
По теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠ABO
180°=∠AOC+∠BOC+2∠ABO
180°=76°+76°+2∠ABO
28°=2∠ABO
∠ABO=14°
Ответ: 14


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru