Задача №648 из 832. Номер задачи на WWW.FIPI.RU - E88B74

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 5,25, а AB=9.


Решение задачи:

Отрезок AC равен сумме отрезков AO и OC, OC - равен радиусу окружности, т.е. 5,25/2=2,625. Найдем AO.
Проведем отрезок BO. BO - так же является радиусом окружности. AB - касательная к окружности, следовательно AB перпендикулярен BO (по свойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
AO2=92+2,6252
AO2=81+6,890625=87,890625
AO=9,375
AC=AO+OC=9,375+2,625=12
Ответ: AC=12


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru