Задача №565 из 832. Номер задачи на WWW.FIPI.RU - 361445

Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.


Решение задачи:

Пусть R - радиус окружности.
Рассмотрим треугольник BCA.
Этот треугольник вписан в окружность, тогда по теореме синусов:
AB/sin(∠BCA)=2R
AB=2Rsin(∠BCA)
Рассмотрим треугольник BCD.
Этот треугольник тоже вписан в окружность, тогда по теореме синусов:
CD/sin(∠CBD)=2R
CD=2Rsin(∠CBD)
Рассмотрим треугольник BCK.
По теореме о сумме углов треугольника:
∠CBD+∠BCA+∠CKB=180°
∠AKB - является смежным по отношению к ∠CKB, следовательно ∠CKB=180°-∠AKB. Подставляем в уравнение выше:
∠CBD+∠BCA+(180°-∠AKB)=180°
∠CBD+∠BCA+(180°-60°)=180°
∠CBD+∠BCA=60°
Для простоты обозначим ∠BCA=а и ∠CBD=b, т.е. a+b=60°
a=60°-b
25=AB=2Rsin(a)
16=CD=2Rsin(60°-a)=2R(sin60°cos(a)-cos60°sin(a))=2R((3/2)*cos(a)-(1/2)*sin(a))=R(3cos(a)-sin(a)) (применена тригонометрическая формула)
Разделим второе уравнение на первое:
16/25=R(3cos(a)-sin(a))/(2Rsin(a))
16/25=(3cos(a)-sin(a))/(2sin(a))
16*2sin(a)=25*(3cos(a)-sin(a))
32sin(a)=253cos(a)-25sin(a)
57sin(a)=253cos(a)
Возведем правую и левую части в квадрат:
3249sin2(a)=625*3cos2(a)
3249sin2(a)=1875(1-sin2(a)) (применена основная тригонометрическая формула)
3249sin2(a)=1875-1875sin2(a))
5124sin2(a)=1875
sin2(a)=1875/5124
sin2(a)=625/1708
sin(a)=625/1708
sin(a)=25/1708
sin(a)=25/(2427)
25=2R*25/(2427)
1=R/(427)
R=427
Ответ: R=427


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2016-10-16 23:38:20) Георгий : AB/sin(/BCA)=2R => AB=2Rsin(/BCA). Потом написано: /BCA=b /CBD=a и далее: AB=2Rsin(a). Разве не должно быть так: AB=2Rsin(b) и CD=2Rsin(b-60)?
(2016-10-16 23:43:40) Георгий : (60-b) (опечатался) и в ответе , кстати, написан корень из 133. :/
(2016-10-17 00:05:27) Администратор: Георгий, про обозначение углов Вы правы, исправлено. В остальном в решении ошибок не найдено. По поводу ответа: в других источниках данная задача решена другим способом, но ответ получился такой же как здесь. Напишите, пожалуйста, из какого источника взят ответ "корень из 133"?
(2016-10-17 01:55:06) Георгий : Упс... Ответ-то правильный, да, это всё я) Ответ "корень из 133" из другой задачи такого же типа и похожим, но разным условием. Извините за такой уж переполох, в целом спасибо.)
(2016-10-17 02:37:33) Администратор: Георгий, ничего страшного, лишний раз перепроверить - не лишнее (пардон за тавтологию). И спасибо за найденную опечатку.
X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru