ОГЭ (ГИА) 9-й класс.
Геометрия


Задача №538 из 844. Номер задачи на WWW.FIPI.RU - 04E377

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.


Решение задачи:

Рассмотрим треугольник BDH.
Данный треугольник прямоугольный, следовательно можно применить теорему Пифагора:
BD2=HD2+BH2
652=632+BH2
4225=3969+BH2
BH2=256
BH=16
Найдем площадь параллелограмма:
S=AD*BH=(AH+HD)*BH=(1+63)*16=1024
Ответ: 1024


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X
X

Введите порядковый номер задачи для раздела 'ОГЭ (ГИА) 9-й класс.
Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 445
X

Введите ключевую фразу или слова для поиска задачи в разделе ОГЭ (ГИА) 9-й класс.
Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2017. Bсе права защищены.
–ейтинг@Mail.ru