ОГЭ (ГИА) 9-й класс.
Геометрия


Задача №523 из 844. Номер задачи на WWW.FIPI.RU - 098A97

Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.


Решение задачи:

Площадь ромба равна S=ah, где a - сторона ромба, h - высота ромба.
AD=AH+HD=21+54=75.
AD=AB=BC=CD (по определению ромба).
Рассмотрим треугольник ABH.
ABH - прямоугольный (т.к. BH - высота), тогда по теореме Пифагора:
AB2=BH2+AH2
752=BH2+212
5625=BH2+441
BH2=5184
BH=72
Sромба=AD*BH=75*72=5400
Ответ: Sромба=5400


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X
X

Введите порядковый номер задачи для раздела 'ОГЭ (ГИА) 9-й класс.
Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 445
X

Введите ключевую фразу или слова для поиска задачи в разделе ОГЭ (ГИА) 9-й класс.
Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2017. Bсе права защищены.
–ейтинг@Mail.ru