Задача №439 из 832. Номер задачи на WWW.FIPI.RU - 08369A

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.


Решение задачи:

∠GAE=∠BEA (т.к. они накрест-лежащие)
∠GAE=∠BEA=∠BAE (т.к. AE - биссектриса).
Получается, что треугольник ABE - равнобедренный.
BF - биссектриса, а по свойству равнобедренного треугольника, она так же и медиана и высота.
Таким образом, получается, что треугольник ABF - прямоугольный.
По теореме Пифагора:
AB2=AF2+BF2
AB2=242+322
AB2=576+1024=1600
AB=40
Ответ: AB=40


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2014-11-02 09:12:26) Эльвира: Спасибо за вашу работу, за помощь в подготовке к итоговой аттестации.
(2014-11-02 11:11:00) Администратор: Эльвира, очень рад, что наш сайт помогает к подготовке, удачи на экзаменах!
(2015-03-16 19:46:19) Евгений: Проще: сумма углов А и В равна 180, а сумма половин углов равна 90, значит угол F равен 90.
(2015-03-16 21:01:20) Администратор: Евгений, тоже неплохой вариант.
X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru