ОГЭ (ГИА) 9-й класс.
Геометрия


Задача №360 из 844. Номер задачи на WWW.FIPI.RU - 0EE92C

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 7.5, а AB=2.


Решение задачи:

Отрезок AC равен сумме отрезков AO и OC, OC - равен радиусу окружности, т.е. 7,5/2=3,75. Найдем AO.
Проведем отрезок BO. BO - так же является радиусом окружности. AB - касательная к окружности, следовательно AB перпендикулярен BO (по свойству касательной).
Значит треугольник ABO - прямоугольный, тогда по теореме Пифагора:
AO2=AB2+BO2
AO2=22+3,752
AO2=4+14,0625=18,0625
AO=4,25
AC=AO+OC=4,25+3,75=8
Ответ: AC=8


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X
X

Введите порядковый номер задачи для раздела 'ОГЭ (ГИА) 9-й класс.
Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 445
X

Введите ключевую фразу или слова для поиска задачи в разделе ОГЭ (ГИА) 9-й класс.
Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2017. Bсе права защищены.
–ейтинг@Mail.ru