Задача №218 из 832. Номер задачи на WWW.FIPI.RU - 0FA7EA

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что ВMKN — ромб.


Решение задачи:

По условию задачи AB=BC=CA (т.к. треугольник ABC - равносторонний). Значит AK=KC=CN=NB=BM=MA.
Тогда, MK - средняя линия треугольника ABC. Следовательно, MK=BN и MK||BN (по теореме о средней линии).
NK - тоже средняя линия, равна BM и параллельна BM.
Получается, что MK=BN=BM=NK, т.е. BMNK - ромб (по свойству ромба).

ч.т.д.


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru