Задача №199 из 832. Номер задачи на WWW.FIPI.RU - 2F96EB

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.


Решение задачи:

По свойству равнобедренной трапеции - углы при основании равны.
Тогда /ADC=30°+45°=75°.
Сумма углов четырехугольника равна 360°, тогда получаем, что:
360°=75°+75°+/DCB+/CBA,
/DCB+/CBA=360°-75°-75°=210°, а учитывая, что /DCB=/CBA (по тому свойству равнобедренной трапеции), получаем /DCB=/CBA=210°/2=105°, эти углы и есть бОльшие в трапеции
Ответ: 105


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
Warning: mysql_fetch_row(): supplied argument is not a valid MySQL result resource in /home/users2/g/glybin/domains/otvet-gotov.ru/pages/m.zadacha.php on line 416
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru