ќ√Ё, 9-й класс.
ћатематика: √еометри€


«адача є309 из 860. Ќомер задачи на WWW.FIPI.RU - FB70A6


»з вершины пр€мого угла C треугольника ABC проведена высота CP. –адиус окружности, вписанной в треугольник BCP, равен 5 см, тангенс угла ABC равен 2,4. Ќайдите радиус вписанной окружности треугольника ABC.


–ешение задачи:

–адиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. ƒл€ этого необходимо вычислить длины всех сторон данного треугольника.
–ассмотрим треугольник ABC.
ѕо определению tgABC=AC/CB=2,4 => AC=2,4*CB.
ѕо теореме ѕифагора AB2=AC2+CB2
AB2=(2,4*CB)2+CB2
AB2=(CB/2,4)2+(2,4*CB/2,4)2
AB2=5,76*CB2+CB2
AB2=6,76*CB2
AB=2,6*CB
Ќеобходимо вычислить CB.
–ассмотрим треугольник BCP.
ѕо определению tgABC=CP/BP=2,4 => CP=2,4*BP
ѕо теореме ѕифагора CB2=CP2+BP2
CB2=(2,4*BP)2+BP2
CB2=6,76*BP2
CB=2,6*BP
BP=CB/2,6
r=(BP+CP-CB)/2
2*r=BP+2,4*BP-2,6*BP
2*5=0,8*BP
BP=12,5
CB=2,6*BP=2,6*12,5=32,5
¬ычислив CB, мы можем вычислить AB и AC, указанные выше:
AB=2,6*CB=2,6*32,5=84,5
AC=2,4*CB=2,4*32,5=78
R=(AC+CB-AB)/2, тогда получаем:
R=(78+32,5-84,5)/2=13.
ќтвет: R=13.


¬ы можете поблагодарить автора, написать свои претензии или предложени€ на странице 'ѕро нас'

 омментарии:

X

9-й класс, ќ√Ё: ћатематика

11-й класс, ≈√Ё: ћатематика (базовый уровень)

X
X

¬ведите пор€дковый номер задачи дл€ раздела 'ќ√Ё, 9-й класс.
ћатематика: √еометри€' (от 1 до 860)

X

¬ведите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

«начение не введено

X

¬ведите ключевую фразу или слова дл€ поиска задачи в разделе ќ√Ё, 9-й класс.
ћатематика: √еометри€


»скать во всех разделах
X

«адайте вопрос по этой задаче.

¬аше им€:

–ейтинг@Mail.ru Ќаш сайт в каталоге manyweb.ru Copyright otvet-gotov.ru 2014-2017. ¬се права защищены. яндекс.ћетрика