Задача №617 из 832. Номер задачи на WWW.FIPI.RU - F1AE38

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.


Решение задачи:

Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник прямоугольный, так как расстояние ОВ является высотой (кротчайшее расстояние).
AB равна половине длины хорды (по третьему свойству хорды).
Тогда, по теореме Пифагора:
AO2=OB2+AB2
AO2=272+(72/2)2
AO2=729+1296=2025
AO=45 - это радиус окружности, следовательно, диаметр D=2*AO=2*45=90
Ответ: D=90


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2015-03-10 20:22:36) : спасибо
X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru