Задача №536 из 832. Номер задачи на WWW.FIPI.RU - A77323

Найдите угол ABC. Ответ дайте в градусах.


Решение задачи:

Проведем отрезки как показано на рисунке. Точка О - центр окружности
Рассмотрим треугольник AOD.
Данный треугольник прямоугольный, так как ∠ODA=90°
AD=OD=4, следовательно треугольник AOD - равнобедренный.
По теореме о сумме углов треугольника:
180°=∠ODA+∠DAO+∠AOD
180°=90°+∠DAO+∠AOD
90°=∠DAO+∠AOD
А так как ∠DAO=∠AOD (по свойству равнобедренного треугольника), то:
∠DAO=∠AOD=90°/2=45°.
Рассмотрим треугольники AOD и COD.
AD=CD=4
OD=4 - общая сторона.
∠ODA=∠ODC=90°
Тогда, по первому признаку равенства треугольников, данные треугольники равны.
Следовательно, ∠AOD=∠COD=45°
∠AOC=∠AOD+∠COD=45°+45°=90°
∠AOC - является центральным для окружности, следовательно градусная мера дуги, на которую опирается этот угол тоже равна 90°.
∠ABC - является вписанным в окружность и опирается на ту же дугу. Следовательно, по свойству угла, он равен половине градусной меры дуги. ∠ABC=90°/2=45°.
Ответ: 45


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru