ОГЭ (ГИА) 9-й класс.
Геометрия


Задача №267 из 844. Номер задачи на WWW.FIPI.RU - 5561BC

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.


Решение задачи:

1) По условию задачи /ADB=/BEC, следовательно, смежные им углы /BDE и /BEС тоже равны друг другу.
Тогда треугольник BDE - равнобедренный (по свойству).
Следовательно, BD=DE, по определению равнобедренного треугольника.
2) Рассмотрим треугольники ABD и CBE.
AD=CE (по условию),
BD=BE (согласно п.1),
/ADB=/BEC (по условию),
следовательно эти треугольники равны (по первому признаку равенства треугольников), а это значит, что BA=BC. Следовательно треугольник ABC - равнобедренный (по определению).

ч.т.д.


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X
X

Введите порядковый номер задачи для раздела 'ОГЭ (ГИА) 9-й класс.
Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе ОГЭ (ГИА) 9-й класс.
Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2017. Bсе права защищены.
–ейтинг@Mail.ru