Задача №301 из 832. Номер задачи на WWW.FIPI.RU - 4A3A58

Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.


Решение задачи:

Рассмотрим каждое утверждение:
1) "Центры вписанной и описанной окружностей равностороннего треугольника совпадают". Центр вписанной окружности - точка пересечения биссектрис. Центр описанной окружности - точка пересечения серединных перпендикуляров. По свойству равностороннего треугольника эти отрезки совпадают. Следовательно, это утверждение верно.
2) "Существует квадрат, который не является ромбом", это утверждение неверно, т.к. квадрат полностью удовлетворяет определению ромба.
3) "Сумма углов остроугольного треугольника равна 180°", это утверждение верно, т.к. сумма углов любого треугольника равна 180° (по теореме).


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru