Задача №378 из 832. Номер задачи на WWW.FIPI.RU - 47609C

На отрезке AB выбрана точка C так, что AC=14 и BC=36. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.


Решение задачи:

Проведем отрезок AD, где D - точка касания окружности и касательной.
AD перпендикулярен к касательной (по свойству касательной), т.е. угол между AD и касательной DB равен 90°.
Следовательно, треугольник ABD - прямоугольный.
AD=AC=14 (т.к. это радиусы окружности и, соответственно, равны друг другу).
По теореме Пифагора: AB2=AD2+BD2
(AC+BC)2=AD2+BD2
(14+36)2=142+BD2
2500=196+BD2
BD2=2304
BD=48
Ответ: длина касательной равна 48.


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru