ОГЭ (ГИА) 9-й класс.
Геометрия


Задача №28 из 844. Номер задачи на WWW.FIPI.RU - 09EFF9

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.


Решение задачи:

Проведем отрезок АО, данный отрезок равен 8 (по условию задачи). Обозначим одну из точек касания окружности и касательной как Р. Проведем отрезок ОР. ОР является перпендикуляром к касательной АР (по свойству касательной). Рассмотрим треугольник АОР. Данный треугольник является прямоугольным,т.к. ОР перпендикулярен АР. АО является биссектрисой угла, образованного касательными (свойство касательных прямых). Соответственно угол РАО равен половине данного угла, т.е. 30°. Синус угла PAO равен 1/2 (табличное значение) и равен отношению ОР к АО (по определению синуса). Соответственно, ОР равняется половине АО, т.е. 4. ОР - это и есть радиус окружности.
Ответ: R=4.


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X
X

Введите порядковый номер задачи для раздела 'ОГЭ (ГИА) 9-й класс.
Геометрия' (от 1 до 844)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе ОГЭ (ГИА) 9-й класс.
Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2017. Bсе права защищены.
–ейтинг@Mail.ru