Задача №549 из 832. Номер задачи на WWW.FIPI.RU - 07019F

В треугольнике ABC проведена биссектриса AL, угол ALC равен 37°, угол ABC равен 25°. Найдите угол ACB. Ответ дайте в градусах.


Решение задачи:

Рассмотрим треугольник ABL.
∠BLA=180°-∠ALC=180°-37°=143° (т.к. это смежные углы)
По теореме о сумме углов треугольника:
180°=∠ABC+∠BLA+∠LAB=25°+143°+∠LAB
∠LAB=180°-25°-143°=12°
Рассмотрим треугольник ALC.
∠LAC=∠LAB=12° (т.к. AL - биссектриса)
По теореме о сумме углов треугольника:
180°=∠ALC+∠ACB+∠LAC=37°+∠ACB+12°
∠ACB=180°-37°-12°=131°
Ответ: 131


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:

X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru