Задача №383 из 832. Номер задачи на WWW.FIPI.RU - 03A3EF

Площадь прямоугольного треугольника равна 7223. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.


Решение задачи:

Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 ( табличное значение)
sin30°=a/c=1/2 (по определению синуса)
c=2a
По теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a3
Из условия: Sтреугольника=ab/2=7223
a*a3/2=7223
Сокращаем 3:
a2=722*2=1444
a=38
Ответ: a=38


Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2015-05-04 15:46:26) Александр: Почему b^2+a^2=(2a)^2 и при переносе вы получаете b^2=3a^2 Вы должны поменять знак при переносе и получить b^2=-a^2+2a^2
(2015-05-04 15:50:57) Администратор: Александр, Вы ошибаетесь:
a2+b2=(2a)2
a2+b2=4a2
b2=4a2-a2
b2=3a2
(2015-05-04 15:53:49) Александр: Аа, точно. a^2+b^2=(2a)^2 то есть a^2+b^2=4a^2 и дальше b^2=-a^2+4a^2
X
X
X

Введите порядковый номер задачи для раздела 'Геометрия' (от 1 до 832)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X
X

Введите ключевую фразу или слова для поиска задачи в разделе Геометрия


Искать во всех разделах
X

Задайте вопрос по этой задаче.

Ваше имя:

Copyright www.otvet-gotov.ru 2014-2016. Bсе права защищены.
–ейтинг@Mail.ru